domingo, 28 de dezembro de 2014

Antioxidant Properties and Hyphenated HPLC-PDA-MS Profiling of Chilean Pica Mango Fruits (Mangifera indica L. Cv. piqueño)

Ramirez, J.E.; Zambrano, R.; Sepúlveda, B.; Simirgiotis, M.J. Antioxidant Properties and Hyphenated HPLC-PDA-MS Profiling of Chilean Pica Mango Fruits (Mangifera indica L. Cv. piqueño). Molecules 2014, 19, 438-458.

Abstract

Antioxidant capacities and polyphenolic contents of two mango cultivars from northern Chile, one of them endemic of an oasis in the Atacama Desert, were compared for the first time. Twenty one phenolic compounds were detected in peel and pulp of mango fruits varieties Pica andTommy Atkins by HPLC-PDA-MS and tentatively characterized. Eighteen compounds were present in Pica pulp (ppu), 13 in Pica peel (ppe) 11 inTommy Atkins pulp (tpu) and 12 in Tommy Atkins peel (tpe). Three procyanidin dimers (peaks 6, 9 and 10), seven acid derivatives (peaks 1–4, 11, 20and 21) and four xanthones were identified, mainly mangiferin (peak 12) and mangiferin gallate, (peak 7), which were present in both peel and pulp of the two studied species from northern Chile. Homomangiferin (peak 13) was also present in both fruit pulps and dimethylmangiferin (peak 14) was present only in Tommy pulp. Pica fruits showed better antioxidant capacities and higher polyphenolic content (73.76/32.23 µg/mL in the DPPH assay and 32.49/72.01 mg GAE/100 g fresh material in the TPC assay, for edible pulp and peel, respectively) than Tommy Atkins fruits (127.22/46.39 µg/mL in the DPPH assay and 25.03/72.01 mg GAE/100 g fresh material in the TPC assay for pulp and peel, respectively). The peel of Pica mangoes showed also the highest content of phenolics (66.02 mg/100 g FW) measured by HPLC-PDA. The HPLC generated fingerprint can be used to authenticate Pica mango fruits and Pica mango food products.

Conclusions

Phenolic components of Pica mangoes were analyzed and quantified by HPLC for the first time. Furthermore, the extracts obtained from edible pulp of Pica mango fruits (local cultivar) showed moderate antioxidant capacity which is two times higher to that found for edible pulp of Tommy Atkins mango fruits cultivated in the same area of Chile. The antioxidant activity was high for both peels, which might be related with presence of diverse phenolic compounds and phenolic content found in these extracts. In this work 21 phenolic compounds were detected and tentatively characterized in mango fruits from northern Chile. Three procyanidin dimers (peaks 6, 9 and 10), seven acid derivatives (peaks 1–4, 11, 20 and 21) and four xanthones were identified, mainly mangiferin (peak 12) and mangiferin gallate, (peak 7) which were present in both peel and pulp of the two species studied from northern Chile. Homomangiferin (peak 13) was also present in both fruit pulps and di-methyl mangiferin (peak 14) was present only in Tommy pulp. Four flavonoid glycosides were also identified, peaks 16-19. Quercetin 3-O-glucoside (peak 16) and isorhamnetin 3-O glucoside (peak 19) were present in the four plant parts studied, while quercetin 3-O-rhamnoside (peak 17) was present only in Tommy pulp and quercetin 3-O-pentoside (peak 18) was present in Pica peel and Tommy pulp. The peel of Pica mangoes showed the highest content of phenolic compounds measured by HPLC-DAD where the two major compounds found were caffeoyl-glucose and mangiferin (34.13 ± 1.77 mg/100 g FW for compound 11 and 22.15 ± 1.14 mg/100 g FW for compound 12, respectively). The HPLC fingerprints can be used to authenticate the mango cultivars and the compounds identified can be used as biomarkers for food products especially for Mangifera indica L. cv piqueño since little research has been reported for this species. Mango de Pica (Mangifera indica L. cv piqueño) can be considered as a rich source of important nutraceuticals, which are in higher amount than in regular commercial Tommy Atkins mango fruits.

See more at:

Nenhum comentário:

Postar um comentário